If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-9=18x
We move all terms to the left:
7x^2-9-(18x)=0
a = 7; b = -18; c = -9;
Δ = b2-4ac
Δ = -182-4·7·(-9)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-24}{2*7}=\frac{-6}{14} =-3/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+24}{2*7}=\frac{42}{14} =3 $
| 12-4(x+6)/4=-3x+5x/2 | | Y=3x+18+36 | | 3(4-8x)+14x+10x=5 | | 4=2(y-3)-7y | | (x+2)7=13 | | 6+15x=21 | | -8x^2=-26x | | 3n-2(n-5)=4 | | 10(n+4)=200 | | 180=3x+10+3x-28 | | 6n-2(n+8)=20 | | X(3.75)+y(2.5)=167.5 | | -4x+7=x | | 6n-2(n+8=20 | | 3y+2=-5y | | -4x-16=36 | | 5n+3(n+8)=56 | | 10x-8=3x+7 | | 8(m+7)=64 | | -2(3x-4)=2-4x+8 | | x-5+42=180 | | y÷2=16 | | 12-3n-n=40 | | n/9-17=-20 | | 1/2(4x+8)=-40 | | 7n-15-2n=45 | | 5^3x=7^x+1 | | 4y-2(y-2)=10 | | 5n+12-n=36 | | 5x+73=-3x | | 7n+8-5n=30 | | 4r^2+48=4r+24+4r^2−8r |